
docs.xgasoft.com

Welcome to Xtend - The Simplest
Display Scaler

Copyright © XGASOFT, All Rights Reserved

Display scalers: everyone needs one, and Xtend is the last one you'll ever need!

Xtend automatically and intelligently resizes your games and applications to �ll any

window or display, desktop or mobile, with pixel precision and no black bars. It's

easy to use and comes pre-con�gured to suit most projects, while also o�ering

deep customization and powerful camera functions for even the most challenging

scaling needs.

How to use Xtend? Add it to your project. Done. Seriously. (But you can always

customize it if you want to!)

Xtend supports multiple scaling modes for di�erent needs. No matter your project,

there's a mode for you! Such as:

Linear - For desktop-style applications that need 1:1 screen real estate

Aspect - For games and interactive applications that need to �ll the screen
while preserving a base play area

Axis - For horizontal or vertical splitscreen

Pixel - For retro art styles that demand pixel perfection at any shape and size

All modes also support DPI scaling for windowed applications, ensuring consistent

physical size across any screen resolution and pixel density.

Features
Setupless

Universal

Copyright © XGASOFT, All Rights Reserved

Xtend only runs when there's a change in viewport resolution. Your app's

performance is uncompromised!

Still not enough? Xtend includes additional functions for managing multiple view

cameras, all with their own scaling modes, and drawing regular content relative to

display scale. It's the complete package!

Take a peek under the hood at any time with built-in debug statistics and hint

boxes. You'll see exactly what's being scaled and how! Take it for a spin in the

included demo!

Xtend basics, from setup (woops, there is none!) to advanced con�g
parameters

Display scaling best practices, and how Xtend macros can help

Individual functions, arguments, and what they mean

To get started, choose a topic from the navigation menu to learn more.

Optimal

Powerful

Helpful

In this reference guide, you'll
learn...

Copyright © XGASOFT, All Rights Reserved

Copyright © XGASOFT, All Rights Reserved

Added auto base DPI
Setting a manual DPI base value in xtend_config is now optional

Added mobile DPI scaling support

Added cutout ("notch") awareness for Android 9+ and iOS 11+ devices
Also includes macros for Android 8 and below for use with
display_set_ui_visibility

Modifying base dimensions from xtend_config in-game now has the same

e�ect as modifying view camera dimensions in-game

Reduced frequency of DPI warnings and edited debug message for clarity

Improved automatic view camera setup at runtime

Improved demo touch support

Fixed bug causing base DPI to always report as changed, preventing window
resizing in some con�gurations

HTML5 now auto-disables DPI scaling with a debug warning (DPI scaling is
handled by the browser instead)

docs.xgasoft.com

Version History

1.0.5

1.0.4

Copyright © XGASOFT, All Rights Reserved

Added support for real-time scale enable/disable

Added preserve setting to scale con�g

Optionally keeps the scaled resolution or resets to default when scaling is
disabled in real-time

Added support for real-time DPI scale modi�cations
Incompatible DPI settings for the current display will now show a warning
in the debug console

Added support for real-time min/max aspect ratio modi�cations

Performance optimizations

Added view_x and view_y macros to track master scale view position in

room

Added xtend.scale.sample option as �nal resolution scale multiplier

Added fallback in case view camera is inaccessible while still being assigned to
a view

Solves rare I32 argument is undefined errors

Fixed room viewport autocon�guration failing in some cases when rooms are
not listed in order of index

Updated GML+ dependencies to latest version (supports GameMaker Studio
2.3.1+)

Initial release

1.0.3

1.0.2

1.0.0

Copyright © XGASOFT, All Rights Reserved

Some updates include certain changes which require existing projects to be

modi�ed to retain compatibility with updated versions. This section documents

those changes as well as the remedies to any incompatibilities they create.

Added cutout ("notch") awareness for Android 9+ and iOS 11+ devices
Android devices will now include cutout areas as part of the overall display
resolution, which may result in slight layout changes with the new version
of Xtend.

iOS devices are una�ected, as the cutout area is always rendered by
default.

Mobile developers should now use display_get_bbox_* functions when

drawing UI elements to avoid rendering inside cutouts on relevant Android
and iOS devices.

Added mobile DPI scaling support
Mobile devices may exhibit di�erent scaling when using default settings.
Customizing settings (or disabling DPI scaling) to restore previous behavior
may be required.

docs.xgasoft.com

Compatibility Notes

1.0.5

Copyright © XGASOFT, All Rights Reserved

GameMaker Studio renders content at multiple resolutions at di�erent stages in

the rendering process. Sometimes they'll all match, but not always. To make

matters worse, out of the box, developers only have two choices for scaling their

content to di�erent sizes and shapes of display: Aspect Ratio (letterboxing) and Full

Scale (stretching). This often creates confusion as developers are disappointed to

�nd their applications distorted and blurred.

In modern applications, it's simply unacceptable to support only one resolution or

aspect ratio. But how can an application possibly support every display, from

desktop to mobile and beyond?

The answer is: Xtend!

Xtend is setupless, meaning all you have to do is import it to your project, and Xtend

itself will handle the rest. It is self-instantiating and ships with a default con�g that

will be suitable for the vast majority of applications out of the box. Base resolution

will be detected based on current project settings, and with the default aspect

scaling mode, you'll never see black bars or cropping again. The viewport will be

automatically extended either horizontally or vertically to �ll the available space by

aspect ratio only, minimizing di�erences in viewport resolution to preserve the look

docs.xgasoft.com

Xtend Reference Guide

Copyright © XGASOFT, All Rights Reserved

and feel of your content. Only the �nal application surface will be rendered 1:1 with

the display to provide the sharpest possible output image.

But that's only scratching the surface. For best results, you should always follow

certain best practices when designing content for scaling. And for projects with

unique scaling needs, Xtend o�ers deep con�g customization and a variety of

useful functions to make your application look perfect.

In this reference guide, we'll examine all this and more in detail.

Copyright © XGASOFT, All Rights Reserved

GameMaker Studio renders content at multiple resolutions at di�erent stages in

the rendering process. Sometimes they'll all match, but not always. To understand

display scaling, it's important to understand the various resolutions at which your

project operates.

It's helpful to think of each resolution as a layer, all stacked together to form the

�nal image:

At the lowest level is the room, where all your objects and sprites are drawn.
The room is projected onto a view (or view camera) which represents the
currently visible area (or, in keeping with the analogy, a small 'slice' of the
bigger room).

Next, the view camera is projected onto a port (or viewport) which determines
where the camera appears on the screen. Typically, the viewport will �ll the
entire window or display, but it is not required to. In fact, it's not required to
match the view camera OR the screen in any way, and can be as big or small or
wide or tall as it pleases, potentially resulting in stretching or squishing the
view camera's pixels beyond their original resolution.

Next, the viewport is projected onto the application surface, which is the �nal
step in the primary rendering process. All viewports are calculated and
displayed on a single �at texture which always �lls the output window

docs.xgasoft.com

Display Scaling Best Practices

Peeling the Onion

Copyright © XGASOFT, All Rights Reserved

(according to the scaling mode set in the project's Game Settings). However,
like the viewport before it, the application surface has its own independent
resolution and is not required to match the viewport OR the window. It is
simply a way to collect all previous layers into one.

Next, there is the GUI layer. GameMaker provides this separate layer for
drawing UI and HUD elements that don't belong in the room itself. And--you
guessed it--it also has its own independent resolution. Like the application
surface, it is nearly always forced to always �ll the output window (according to
the scaling mode set in the project's Game Settings), potentially resulting in
stretching or squishing. While it technically can be moved and scaled (similar to
a view) this is generally not advisable. By default, the GUI layer will match
resolution with either the application surface or the game window, whichever
GameMaker calculates is more preferable.

Finally, we have the output window (or display--but because an application is
still technically in a window even when running in fullscreen, 'window' should
always be assumed). The window will frame content in one of two ways,
determined by the scaling mode set in the project's Game Settings: Aspect
Ratio, or Full Scale. Aspect Ratio scaling will resolve any di�erences between
the window itself and the application surface/GUI layer by adding black bars on
either side of the image, while Full Scale will simply stretch the application
surface/GUI layer to �ll the window.

So, then, a GameMaker Studio application does not run at one resolution, but

potentially �ve di�erent resolutions all at once!

Changing resolutions causes any surfaces (including the application surface) to

break and therefore require re-rendering. For custom surfaces containing

dynamically-generated content, this can result in lost visual information. To

avoid this problem while scaling, see draw_get_surface from GML+!

TIP

Copyright © XGASOFT, All Rights Reserved

https://docs.xgasoft.com/gmlp/index

It's important to note that Xtend does not replace this rendering process, but rather

manages it intelligently. In addition, Xtend cannot override the built-in scaling

method set in the project's Game Settings. While both available methods will

produce the same results a majority of the time with a good display scaler, there

are some cases where Aspect Ratio is preferred, so this setting should always be

enabled when using Xtend.

This shouldn't be confused with Xtend's own aspect scaling mode, as all

Xtend scaling modes are subject to GameMaker's built-in scaling.

While one might assume that the goal of display scaling is to match application

resolution with window resolution, this is no longer true in modern applications. In

fact, with Xtend, only the application surface and GUI layer will match window

resolution 1:1. This ensures that UI and HUD elements can appear at full resolution

regardless of internal resolution, while internal contents are not skewed by

mismatches between the application surface and window.

For everything else, the goal is twofold:

1. Preserve square pixels

2. Match view shape proportionately to eliminate black bars

Unfortunately, it is not always possible to achieve the �rst goal perfectly, but it is

possible to get close enough that any discrepencies are invisible on modern high-

resolution displays.

A Display Scaler's Role

NOTE

Copyright © XGASOFT, All Rights Reserved

For low-resolution art styles, see Xtend's pixel scaling mode, which simulates

integer scaling for true pixel perfection

Content that scales elegantly to di�erent shapes of display is called Responsive

Design. First popularized by websites that must work equally well on both desktop

and mobile devices, the same principles now apply to a broad variety of

applications. While no speci�c design changes are required to use Xtend, for best

results, it's important to foster a few particular design habits in your programming:

First, the #1 rule of responsive design is to ditch the concept of pixels as a unit of

measurement. Instead, all coordinates and dimensions must be thought of as

percentages of the output viewport or other key visual elements (which are in turn

scaled relative to the viewport).

This can be expressed in di�erent ways, but a common approach is to calculate a

pixel value by simply multiplying the primary viewport dimensions by a fraction.

Xtend includes built-in macros for this, aptly named view_width and

view_height , where, for example, view_width*0.5 (or 50%) would be center.

GameMaker Studio itself also includes functions for getting the dimensions of other

viewports (camera_get_view_width(view_camera[1])), layers

(display_get_gui_width()), and elements (sprite_get_width(my_sprite)).

TIP

A Designer's Role

Percentages, Percentages, Percentages

Copyright © XGASOFT, All Rights Reserved

Calculating pixel values as percentages of other pixel values ensures elements

retain the same visual placement at any resolution.

What makes these values especially powerful is that they apply to both position

and scale. Designing relative to percentages will keep your layout consistent at

di�erent sizes, and also resize individual elements within that layout appropriately

for the available space.

By checking for di�erent resolution or aspect ratio thresholds, you can even trigger

entirely di�erent layouts suitable for di�erent viewport shapes. For example, if

(view_aspect > 1) will return true in landscape orientation and false in

portrait. if (view_width < 1280) will determine whether the current resolution is

sub-HD, at which point a larger font may be required for text elements.

Scale can also play a useful role as a multiplier of base resolution. Xtend includes

built-in macros for view_xscale and view_yscale which can be applied to all

sorts of elements to ensure they occupy a suitable area of the display at any

resolution. This includes both functions which explicitly de�ne scale (e.g.

draw_sprite_ext) and those which de�ne dimensions as a value of pixels (e.g.

draw_sprite_transformed). Either supply the scale value itself, or multiply the

base dimensions by the scale value to produce �exible content.

To scale groups of elements as a whole, see instance_link from GML+!

Two Layouts are Better than One

TIP

Keep it Centered
Copyright © XGASOFT, All Rights Reserved

https://docs.xgasoft.com/gmlp/index

A rule of thumb: shift your design paradigm southeast by 50%. Computers in

general like to draw things from the top left corner to the bottom right, but that

doesn't mean your design should work the same way. In many cases, you'll want to

base your content around the center of the viewport rather than a corner. Xtend

also includes built-in macros for view_xcenter and view_ycenter to provide an

easy origin point. Of course, what matters is that these values will always be center

regardless of window shape. You can then add or subtract to position content from

there.

This rule is not universal, but critical where it matters. Nothing will break faster

when changing display scale than manually centered content designed for a �xed

resolution.

You can also center viewports with Xtend! See camera_set_view_halign and

camera_set_view_valign !

With these concepts in mind, it's also important to know where responsive design

doesn't apply. Remember, all �ve layers in the rendering 'onion' exist to provide a

window into your game world. That world is still ultimately comprised of pixels, and

may or may not bene�t from changing itself relative to the viewer.

While puzzle games and visual novels are integrated directly into the user interface,

platformers and action games primarily exist in a separate space. In the end, only

you, the designer, can decide which elements require responsive design and which

don't to provide the best experience.

TIP

... Or Don't

Copyright © XGASOFT, All Rights Reserved

Of course, even the best design has its limits. To protect against the extremes,

Xtend's con�g allows setting a minimum and maximum aspect ratio, beyond

which the application will letterbox or pillarbox. The result still takes advantage of

the available space as much as is reasonable, but without breaking design. After all,

there's no shame in creating a good design that works in some scenarios over

winding up with a design too broad to feel great in any scenario.

Target whatever range of design you can and let Xtend take care of the rest! To

learn how, continue on to the rest of this reference guide.

Copyright © XGASOFT, All Rights Reserved

Xtend is setupless, meaning all you have to do is add it to your project, and you're

good to go. But of course, you can always customize it too!

Upon importing Xtend, you'll see an XGASOFT > Xtend folder added to your asset

browser. At the root of this folder is a �le called xtend_config . You may freely edit

this �le to change the default con�guration or even add new entries for your own

reference.

Xtend's con�g �le uses a struct format similar to JSON. Settings are grouped into

categories under the root, which is simply called xtend . Any values changed in this

�le will be applied at runtime, but they can also be accessed or changed later by

chaining categories and properties together:

Some properties are optional, and are commented out by default. Simply

uncomment any properties you wish to modify, and your custom values will be

applied.

docs.xgasoft.com

Configuring Xtend

xtend.scale.enabled = true;

Copyright © XGASOFT, All Rights Reserved

Any properties not commented out by default are required and cannot be

removed.

For details on each property, see the sections covering each category below.

Categories are ordered logically rather than alphabetically.

The window category sets the foundation for scaling behaviors. Of primary

importance is the base resolution, which is the unscaled resolution your game

design should assume. Scaling will be applied from the base resolution to whatever

window it may be displayed on, so choose this value carefully. There is no right or

wrong resolution; only the appropriate resolution for your game design and art

style.

Many properties here are optional, and will be detected automatically based on

room settings. However, getting these right is important, so it is recommended to

set them manually rather than rely on Xtend's best guesses. Only you can decide

what suits your project!

debug: {
 ...
 stats_enabled: false, <-- This value is active
 //stats_color: c_lime, <-- Remove "//" to activate this value
 ...
}

CAUTION

win

Copyright © XGASOFT, All Rights Reserved

Base resolution determines the initial resolution of your game, after which scaling

will be applied. If at �rst scaling isn't working as expected, start here.

Viewports managed by Xtend can still be moved and resized freely. If you

resize an active view camera later, the resized dimensions will become the new

base resolution.

Of close secondary importance is DPI scaling. For high-resolution displays, DPI

scaling will magnify content to present the application at the same physical size as

on lower-resolution displays. It is generally recommended to enable DPI scaling,

especially on desktop platforms.

How this magni�cation is applied depends on the base DPI. This value is technically

arbitrary, but in general, a base DPI of 96 or 160 is the accepted standard by

desktop and mobile operating systems, respectively. (By default, Xtend will use a

custom DPI setting for each major platform.)

win: {
 ...
 width_base: 1920,
 height_base: 1080,
 ...
},

TIP

win: {
 ...
 dpi_enabled: true,
 dpi_base: 96,
 ...
},

Copyright © XGASOFT, All Rights Reserved

DPI scaling will be calculated as a multiplier of base DPI vs actual DPI. Decreasing

the base DPI will result in higher magni�cation. On desktop platforms, this applies

to window size only (scaling the window up), while on mobile platforms, this applies

to the main view camera (scaling the viewport down).

If the magni�ed window is larger than the physical display, DPI scaling will be

disabled automatically. It can be enabled again by running window_set_dpi or

setting xtend.win.dpi_enabled to true .

Finally, Xtend allows setting minimum and maximum aspect ratios to prevent

extreme window shapes from breaking your design. This is most easily expressed

as width/height . If you are familiar with aspect ratios such as 4:3, 16:9, or 21:9,

these can be written as 4/3 , 16/9 , and 21/9 , respectively. For portrait

orientation, simply reverse the order: 3/4 , 9/16 , or 9/21 , for example. If either

aspect ratio is set to 0 , no limit will be applied (this is the default behavior).

These values are just examples, and may represent too narrow a range for

many users. You should always try to accommodate the broadest range of

ratios possible!

NOTE

win: {
 ...
 aspect_min: 4/3,
 aspect_max: 21/9,
 ...
},

NOTE

Copyright © XGASOFT, All Rights Reserved

With your window behaviors de�ned, you can also customize how content is scaled

to �t within. Xtend provides 5 unique scaling modes to suit di�erent types of

content:

linear : Crops or extends both dimensions to match available screen area on

a 1:1 basis. Ideal for desktop-style applications.

aspect : Preserves the base area of the view (width AND height) and extends

the longer axis to �ll the screen. Never crops. (Recommended, enabled by
default.)

axis_x : Preserves height at the cost of either cropping or extending width to

�ll the screen. Ideal for horizontal splitscreen.

axis_y : Preserves width at the cost of either cropping or extending height to

�ll the screen. Ideal for vertical splitscreen.

pixel : For retro art styles with very low resolution. Finds the nearest integer

scale on larger resolutions and crops or extends width and height only as
necessary to �ll aspect ratio. Square pixels are preserved at all costs.

The chosen scaling mode will be applied to a view camera. GameMaker Studio 2

features a camera system that allows for any number of cameras to exist at the

same time, but only 8 can be applied to active views at once (for a maximum of 8-

way splitscreen). These views are numbered 0-7, where one must be dedicated

exclusively to Xtend as the 'master scaling view'. The chosen view will be con�gured

scale

scale: {
 ...
 mode: aspect,
 ...
},

Copyright © XGASOFT, All Rights Reserved

automatically, but be warned that it will also override any manual settings, so it's

best to choose a view not currently occupied for other purposes.

Additional views can also be con�gured in xtend_config . See the view#

category for details.

GameMaker Studio also features a separate GUI layer independent of the view

camera system. In most cases, it is preferable to allow Xtend to automatically scale

this layer as well, but this is not required. Xtend will scale the GUI to match window

resolution 1:1 rather than view camera resolution. For other behaviors, you may

disable Xtend GUI scaling to take control of the GUI layer yourself.

In some cases, scaling may cause visible pixellation which is undesirable for certain

art styles. This can be mitigated with texture �ltering to smooth out scaling results

with linear interpolation. However, it is not universally suitable and is disabled by

default.

scale: {
 ...
 view: 0,
 ...
},

TIP

scale: {
 ...
 gui: true,
 ...
},

Copyright © XGASOFT, All Rights Reserved

In other cases, certain art styles may actually bene�t from additional pixellation, or

low-end devices that can't render a project at native resolution. By default, the

application surface will render 1:1 with the scaled resolution, but this can be

adjusted with the sample multiplier. This will increase or decrease the rendered

resolution of the application surface without a�ecting viewports or the GUI layer.

Multiples of 2 will produce best results.

Sample size is capped to acceptable minimum and maximum texture

resolutions as de�ned by GameMaker Studio export modules. Multiplier range

may vary in real-time depending on scaling. Any invalid inputs will be

automatically adjusted.

Finally, Xtend provides a way to disable scaling without having to remove it from

your project. This can be useful for testing purposes or even for providing users the

option of a �xed aspect ratio if they prefer. However, it's important to note that this

setting disables scaling, but it does not disable Xtend! Other features, like Xtend's

built-in debug mode, will remain accessible regardless.

 scale: {
 ...
 filter: true,
 ...
 },

 scale: {
 ...
 sample: 0.5,
 ...
 }

TIP

Copyright © XGASOFT, All Rights Reserved

By default, disabling scaling in real-time will cause the viewport to reset to its

original size, potentially introducing letterboxing/pillarboxing. However, if you'd

prefer to simply "freeze" the current scale, it is possible to preserve it instead.

Xtend features a built-in debug mode for displaying scaling statistics and hint

boxes. Hint boxes highlight the area where content has been extended or cropped

to provide context for base vs scaled dimensions. Stats and hints can be enabled or

disabled independently to avoid cluttering the display with too much information.

scale: {
 ...
 enabled: false,
 ...
},

scale: {
 ...
 preserve: true,
 ...
}

debug

debug: {
 ...
 hints_enabled: true,
 stats_enabled: true,
 ...
},

Copyright © XGASOFT, All Rights Reserved

Enabling debug features will incur a signi�cant performance impact and should

be disabled when pro�ling your application.

Because debug information can be di�cult to see depending on what's in the

background, stats and hints can also be given custom colors, and hints alpha can

be customized for more or less contrast with background content. Hints alpha has

a range from 0-1, while colors can be provided in any GameMaker format. Note

that the chosen hints color will be inverted to show negative space from cropped

areas.

For hex notation support, see make_color_hex from GML+!

CAUTION

debug: {
 ...
 hints_color: c_aqua,
 hints_alpha: 0.5,
 stats_color: c_lime,
 ...
},

TIP

Copyright © XGASOFT, All Rights Reserved

https://docs.xgasoft.com/gmlp/index

Debug stats use a range of font sizes to accommodate di�erent resolutions.

Each size is stored as a separate bitmap font asset, named fnt_debug_### ,

where ### is a multiple of 50 (relating to DPI scale). Included sizes cover the

spectrum from 360p to 4K, but additional fonts can be supplied for other

resolutions by adding a new font asset with the desired DPI scale value in the

name.

If an exact match can't be found for the current resolution, the nearest

applicable font size will be used instead.

GameMaker Studio supports up to 8 active views, numbered 0-7, where one must

be dedicated exclusively to Xtend as the 'master scaling view'. However, additional

views can also be de�ned in xtend_config for precon�gured splitscreen. This is

not required, as additional views must always be scaled later with

camera_set_view_scale to re�ect any changes in real-time, but some may �nd

xtend_config a more convenient interface for the initial setup.

As soon as any view is scaled by Xtend, con�guration entries will be added for it in

the running application. (This includes the master scaling view.) Each view has its

own category, named view# , where # is the view number (e.g. view1), and

requires four properties to be valid:

NOTE

view#

Copyright © XGASOFT, All Rights Reserved

In the case of the master view, width_base and height_base will always equal

the values de�ned in the win category. Any manual changes will be overwritten.

For other views, these values determine the initial size of the view camera--or put

di�erently, the area of the room visible to the camera. Where the camera appears

on the screen is determined by the viewport settings de�ned in

camera_set_view_scale . If no con�guration exists for the view when it is �rst

scaled, size will be determined automatically. You can also use the GameMaker

Studio room editor, or run camera_set_view_size before

camera_set_view_scale to have the same e�ect as de�ning a size in

xtend_config .

Also note that unlike the master view, additional views are not forced visible by

default, and must be enabled manually either in the GameMaker Studio room

editor or by setting view_visible[#] = true; in code executed within the

relevant room itself.

Xtend is compatible with most built-in GameMaker view camera functions. You

can freely resize, move, zoom, and even rotate view cameras, and Xtend will

automatically update itself to re�ect the manual changes.

view1: {
 width_base: 1920,
 height_base: 1080,
 halign: va_left,
 valign: va_top,
},

TIP

Copyright © XGASOFT, All Rights Reserved

Additionally, each view managed by Xtend supports horizontal and vertical

alignment. These values determine the 'anchor point' or 'attachment' of the view

camera when it is resized. When this occurs, the camera position will be o�set to

whichever side is indicated by halign and valign .

Possible values include:

halign

va_left

va_center

va_right

valign

va_top

va_middle

va_bottom

While the default va_left , va_top alignment is preferable in the vast majority of

cases, some applications may bene�t from preserving a particular focal point

during rescale operations. This requires thinking about your design from a

particular origin point, however, and may not produce the results you expect

without the proper design approach.

View alignment can always be determined later with

camera_get_view_halign / camera_get_view_valign and

camera_set_view_halign / camera_set_view_valign .

Copyright © XGASOFT, All Rights Reserved

For the sake of memorability and forwards-compatibility, Xtend provides built-in keywords and

custom macros to aid in developing projects with responsive design. It is strongly recommended to

always use keywords and macros when available, as their literal values may change in future

updates.

Note that most macros are read-only, and should be used for reference, not for modi�cation. For

example, to change the position of the master scaling view within the room, view_x = 50; is

invalid. Instead, use regular built-in GML functions for modifying view camera properties, e.g.

camera_set_view_pos(view_camera[0], 50, 0); .

Many macros are pre�xed, meaning you don't have to memorize each one to use them. Simply

begin typing the �rst few letters of a macro or keyword in your code editor and you'll be shown

auto-complete options to choose the desired item from a list.

docs.xgasoft.com

Macros & Keywords

TIP

Viewport Properties

Copyright © XGASOFT, All Rights Reserved

Keyword/Macro Value Description

view_x camera_get_view_x(view_camera[xtend.scale.view])

Returns the
room X
coordinate
of the
master
scaling
view, in
pixels

view_y camera_get_view_y(view_camera[xtend.scale.view])

Returns the
room Y
coordinate
of the
master
scaling
view, in
pixels

view_width camera_get_view_width(view_camera[xtend.scale.view])

Returns the
width of
the master
scaling
view, in
pixels

view_height camera_get_view_height(view_camera[xtend.scale.view])

Returns the
height of
the master
scaling
view, in
pixels

Copyright © XGASOFT, All Rights Reserved

Keyword/Macro Value Description

view_xcenter (view_width*0.5)

Returns
half the
width of
the master
scaling
view, in
pixels (does
not include
room X
coord)

view_ycenter (view_height*0.5)

Returns
half the
height of
the master
scaling
view, in
pixels (does
not include
room Y
coord)

view_xscale (view_width/xtend.win.width_base)

Returns the
relative
horizontal
scale of the
master
scaling view
as
compared
to base
width, as a
multplier

Copyright © XGASOFT, All Rights Reserved

Keyword/Macro Value Description

view_yscale (view_height/xtend.win.height_base)

Returns the
relative
vertical
scale of the
master
scaling view
as
compared
to base
height, as a
multplier

view_aspect (view_width/view_height)

Returns the
aspect ratio
of the
master
scaling
view, as a
fraction

As of version 1.0.5, Xtend supports rendering cutout areas in Android 9+. While Android 8 and

below do not support cutouts, they do handle the system UI in di�erent ways depending on

manufacturer. This can include showing or hiding di�erent system UI elements, which cut into an

app's rendering space. To explicitly set system UI behavior, GameMaker Studio includes the

function display_set_ui_visibility , but does not provide the �ags needed to actually use it.

Xtend solves this problem by including prede�ned �ags consistent with the Android SDK.

Android System Flags

Copyright © XGASOFT, All Rights Reserved

https://developer.android.com/reference/android/view/View

Keyword/Macro Value Description

SYSTEM_UI_FLAG_VISIBLE 0
View has requested the system UI
(status bar) to be visible (the default).

SYSTEM_UI_FLAG_LOW_PROFILE 1

View has requested the system UI to
enter an unobtrusive "low pro�le"
mode. Status bar and/or navigation
icons may dim.

SYSTEM_UI_FLAG_HIDE_NAVIGATION 2
View has requested that the system
navigation (Home, Back, and the like) be
temporarily hidden.

SYSTEM_UI_FLAG_FULLSCREEN 4

View has requested to go into the
normal fullscreen mode so that its
content can take over the screen while
still allowing the user to interact with
the application.

SYSTEM_UI_FLAG_LIGHT_NAVIGATION_BAR 16

Requests the navigation bar to draw in a
mode that is compatible with light
navigation bar backgrounds. For this to
take e�ect, the window must request
FLAG_DRAWS_SYSTEM_BAR_BACKGROUNDS

but not FLAG_TRANSLUCENT_NAVIGATION .

SYSTEM_UI_FLAG_LAYOUT_STABLE 256

Requests content insets to always
represent the worst case that the
application can expect as a continuous
state (depending on other active �ags).

SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION 512

View would like its window to be laid out
as if it has requested
SYSTEM_UI_FLAG_HIDE_NAVIGATION ,

even if it currently hasn't.

Copyright © XGASOFT, All Rights Reserved

Keyword/Macro Value Description

SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN 1024

View would like its window to be laid out
as if it has requested
SYSTEM_UI_FLAG_FULLSCREEN, even if it
currently hasn't.

SYSTEM_UI_FLAG_IMMERSIVE 2048
View would like to remain interactive
when hiding the navigation bar with
SYSTEM_UI_FLAG_HIDE_NAVIGATION

SYSTEM_UI_FLAG_IMMERSIVE_STICKY 4096

View would like to remain interactive
when hiding the status bar with
SYSTEM_UI_FLAG_FULLSCREEN and/or

hiding the navigation bar with
SYSTEM_UI_FLAG_HIDE_NAVIGATION . Use

this �ag to create an immersive
experience while also hiding the system
bars.

SYSTEM_UI_FLAG_LIGHT_STATUS_BAR 8192

Requests the status bar to draw in a
mode that is compatible with light
status bar backgrounds. For this to take
e�ect, the window must request
FLAG_DRAWS_SYSTEM_BAR_BACKGROUNDS

but not FLAG_TRANSLUCENT_STATUS .

Multiple �ags can be assigned in display_set_ui_visibility at once by separating values

with bitwise OR, aka the pipe symbol (|)

TIP

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

[dpi] real Optional: New override (not base) DPI value to set

Applies the current DPI scale to the window, if DPI scaling is enabled. Can also be

used to override the base DPI setting if a new DPI value is provided. If DPI scaling is

disabled, base DPI will be applied instead regardless of override.

Use with caution! DPI scaling is managed by Xtend, so this function should

generally not be run manually. Consider assigning a new base DPI value in

xtend_config instead.

docs.xgasoft.com

The "window_set_dpi" Function

Syntax

window_set_dpi([dpi]);

Description

Example
Copyright © XGASOFT, All Rights Reserved

window_set_dpi();

window_set_dpi(128);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

N/A N/A No arguments

Returns the current window DPI as a scale multiplier of the base DPI setting. Result

depends on the running platform. Desktop and mobile DPI multipliers are inverted,

such that desktop platforms will generally scale up (values > 1.0), while mobile

platforms will generally scale down (values < 1.0).

docs.xgasoft.com

The "window_get_dpi" Function

Syntax

window_get_dpi();

Description

Example

Copyright © XGASOFT, All Rights Reserved

if (os_type == os_windows) {
 if (window_get_dpi() < 1) {
 draw_set_font(font_small);
 } else {
 draw_set_font(font_large);
 }
}

Copyright © XGASOFT, All Rights Reserved

docs.xgasoft.com

The "camera_set_view_scale"
Function

Syntax

camera_set_view_scale(camera, mode, xport, yport, wport, hport,
[force]);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

camera camera
The camera index to modify (typically
view_camera[#])

mode constant The scaling mode to use (same as con�g)

xport real
The horizontal position to display the camera within
the master view

yport real
The vertical position to display the camera within the
master view

wport real
The horizontal area to display the camera within the
master view

hport real
The vertical area to display the camera within the
master view

[force] boolean
Optional: Perform scaling even if a resize was not
detected

While the master view de�ned in con�g will always �ll the entire window, additional

views can be created for splitscreen display within the master view. This script

applies the same scaling behaviors to splitscreen views as are applied to the master

view.

GameMaker currently provides 8 built-in view cameras, numbered 0-7, although

custom cameras can be assigned to the view as well. To use a built-in camera, input

Description

Copyright © XGASOFT, All Rights Reserved

camera as view_camera[#] . view_visible[#] must be true for the viewport to

be displayed.

Note that if the master view is input in this script, it will be ignored.

It is recommended to use the built-in view_width and view_height macros to

position and size the viewport relative to the master view. If this script is run in a

Step event, inner views will respond to changes in window size with correct scaling.

For other events, enabling the optional [force] argument will trigger scaling

immediately.

By default, base width/height will be determined by the size of the camera when

this script is �rst run. This can be set with camera_set_view_size or by de�ning

width_base and height_base within a view# section in con�g.

Example

camera_set_view_scale(view_camera[1], axis_x, 0, 0, view_width*0.5,
view_height);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

camera camera The camera index to check (typically view_camera[#])

Returns the horizontal scale multipler of a view camera scaled with

camera_set_view_scale .

If the input view has not been scaled, it will return a value of 1. If the input view

does not exist, it will return 0 instead.

docs.xgasoft.com

The "camera_get_view_xscale"
Function

Syntax

camera_get_view_xscale(camera);

Description

Copyright © XGASOFT, All Rights Reserved

Example

image_xscale = camera_get_view_xscale(view_camera[1]);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

camera camera The camera index to check (typically view_camera[#])

Returns the vertical scale multipler of a view camera scaled with

camera_set_view_scale .

If the input view has not been scaled, it will return a value of 1. If the input view

does not exist, it will return 0 instead.

docs.xgasoft.com

The "camera_get_view_yscale"
Function

Syntax

camera_get_view_yscale(camera);

Description

Copyright © XGASOFT, All Rights Reserved

Example

image_yscale = camera_get_view_yscale(view_camera[1]);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

camera camera
The camera index to modify (typically
view_camera[#])

halign constant
The alignment to set (va_left , va_center , or

va_right)

Sets the horizontal alignment of a camera, if it is currently assigned to a view.

Alignment determines which side(s) of the view are expanded or cropped following

a resize operation. Possible values are va_left , va_center , or va_top

(va_left by default).

docs.xgasoft.com

The "camera_set_view_halign"
Function

Syntax

camera_set_view_halign(camera, halign);

Description

Copyright © XGASOFT, All Rights Reserved

Example

camera_set_view_halign(view_camera[1], va_center);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

camera camera The camera index to check (typically view_camera[#])

Returns the horizontal alignment of the input camera, if it is currently assigned to a

view. Possible values are va_left , va_center , va_top . If the camera is not

assigned to a view, va_left will be returned.

docs.xgasoft.com

The "camera_get_view_halign"
Function

Syntax

camera_get_view_halign(camera);

Description

Example

Copyright © XGASOFT, All Rights Reserved

var halign = camera_get_view_halign(view_camera[1]);

draw_set_halign(halign);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

camera camera
The camera index to modify (typically
view_camera[#])

valign constant
The alignment to set (va_top , va_middle , or

va_bottom)

Sets the vertical alignment of a camera, if it is currently assigned to a view.

Alignment determines which side(s) of the view are expanded or cropped following

a resize operation. Possible values are va_top , va_middle , or va_bottom

(va_top by default).

docs.xgasoft.com

The "camera_set_view_valign"
Function

Syntax

camera_set_view_valign(camera, valign);

Description

Copyright © XGASOFT, All Rights Reserved

Example

camera_set_view_valign(view_camera[1], va_middle);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

camera camera The camera index to check (typically view_camera[#])

Returns the vertical alignment of the input camera, if it is currently assigned to a

view. Possible values are va_top , va_middle , va_bottom . If the camera is not

assigned to a view, va_top will be returned.

docs.xgasoft.com

The "camera_get_view_valign"
Function

Syntax

camera_get_view_valign(camera);

Description

Example

Copyright © XGASOFT, All Rights Reserved

var valign = camera_get_view_valign(view_camera[1]);

draw_set_valign(valign);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

camera camera The camera index to check (typically view_camera[#])

Returns the width in pixels of the left bounding box (or pillarbox) of a camera, if it is

currently assigned to a view. This value is relative to the base width de�ned in

con�g, and is useful for managing non-scaled, centered content within a scaled

viewport. If the camera is not assigned to a view, 0 will be returned instead.

docs.xgasoft.com

The
"camera_get_view_bbox_left"
Function

Syntax

camera_get_view_bbox_left(camera);

Description

Copyright © XGASOFT, All Rights Reserved

Note that this does not measure space outside the view when min/max aspect

ratios are employed, but rather the space inside a scaled view relative to an

unscaled view.

Example

draw_rectangle(0, 0, camera_get_view_bbox_left(), view_height, false);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

camera camera The camera index to check (typically view_camera[#])

Returns the width in pixels of the right bounding box (or pillarbox) of a camera, if it

is currently assigned to a view. This value is relative to the base width de�ned in

con�g, and is useful for managing non-scaled, centered content within a scaled

viewport. If the camera is not assigned to a view, 0 will be returned instead.

docs.xgasoft.com

The
"camera_get_view_bbox_right"
Function

Syntax

camera_get_view_bbox_right(camera);

Description

Copyright © XGASOFT, All Rights Reserved

Note that this does not measure space outside the view when min/max aspect

ratios are employed, but rather the space inside a scaled view relative to an

unscaled view.

Example

draw_rectangle(camera_get_view_bbox_right(), 0, view_width,
view_height, false);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

camera camera The camera index to check (typically view_camera[#])

Returns the height in pixels of the top bounding box (or letterbox) of a camera, if it

is currently assigned to a view. This value is relative to the base height de�ned in

con�g, and is useful for managing non-scaled, centered content within a scaled

viewport. If the camera is not assigned to a view, 0 will be returned instead.

docs.xgasoft.com

The
"camera_get_view_bbox_top"
Function

Syntax

camera_get_view_bbox_top(camera);

Description

Copyright © XGASOFT, All Rights Reserved

Note that this does not measure space outside the view when min/max aspect

ratios are employed, but rather the space inside a scaled view relative to an

unscaled view.

Example

draw_rectangle(0, 0, view_width, camera_get_view_bbox_top(), false);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

camera camera The camera index to check (typically view_camera[#])

Returns the height in pixels of the bottom bounding box (or letterbox) of a camera,

if it is currently assigned to a view. This value is relative to the base height de�ned

in con�g, and is useful for managing non-scaled, centered content within a scaled

viewport. If the camera is not assigned to a view, 0 will be returned instead.

docs.xgasoft.com

The
"camera_get_view_bbox_botto
m" Function

Syntax

camera_get_view_bbox_bottom(camera);

Description

Copyright © XGASOFT, All Rights Reserved

Note that this does not measure space outside the view when min/max aspect

ratios are employed, but rather the space inside a scaled view relative to an

unscaled view.

Example

draw_rectangle(0, camera_get_view_bbox_bottom(), view_width,
view_height, false);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

N/A N/A No arguments

Android/iOS only. Returns the width in pixels of the left bounding box (or pillarbox)

of a display with one or more cutouts (aka "notch" or "hole-punch"). Will return 0 on

other displays.

Note that bounding box will change depending on device orientation. This function

will always return the value for the left side of the display relative to the user's

perspective.

docs.xgasoft.com

The "display_get_bbox_left"
Function

Syntax

display_get_bbox_left();

Description

Copyright © XGASOFT, All Rights Reserved

Example

var str = "Hello, world!";
var sx = display_get_bbox_left();
var sy = 50;

draw_text(sx, sy, str);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

N/A N/A No arguments

Android/iOS only. Returns the width in pixels of the right bounding box (or

pillarbox) of a display with one or more cutouts (aka "notch" or "hole-punch"). Will

return 0 on other displays.

Note that bounding box will change depending on device orientation. This function

will always return the value for the right side of the display relative to the user's

perspective.

docs.xgasoft.com

The "display_get_bbox_right"
Function

Syntax

display_get_bbox_right();

Description

Copyright © XGASOFT, All Rights Reserved

Example

var str = "Hello, world!";
var sx = display_get_width() - display_get_bbox_right() -
string_width(str);
var sy = 50;

draw_text(sx, sy, str);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

N/A N/A No arguments

Android/iOS only. Returns the height in pixels of the top bounding box (or

letterbox) of a display with one or more cutouts (aka "notch" or "hole-punch"). Will

return 0 on other displays.

Note that bounding box will change depending on device orientation. This function

will always return the value for the top side of the display relative to the user's

perspective.

docs.xgasoft.com

The "display_get_bbox_top"
Function

Syntax

display_get_bbox_top();

Description

Copyright © XGASOFT, All Rights Reserved

Example

var str = "Hello, world!";
var sx = 50;
var sy = display_get_bbox_top();

draw_text(sx, sy, str);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

N/A N/A No arguments

Android/iOS only. Returns the height in pixels of the bottom bounding box (or

letterbox) of a display with one or more cutouts (aka "notch" or "hole-punch"). Will

return 0 on other displays.

Note that bounding box will change depending on device orientation. This function

will always return the value for the bottom side of the display relative to the user's

perspective.

docs.xgasoft.com

The "display_get_bbox_bottom"
Function

Syntax

display_get_bbox_bottom();

Description

Copyright © XGASOFT, All Rights Reserved

Example

var str = "Hello, world!";
var sx = 50;
var sy = display_get_height() - display_get_bbox_bottom() -
string_height(str);

draw_text(sx, sy, str);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

ratio real
Percentage of the view to occupy, as a value ranging
from 0-1

min real Minimum allowable ratio, or percentage of the view

max real Maximum allowable ratio, or percentage of the view

Draws the sprite assigned to the running object scaled relative to the size of the

active view camera. Ratio is calculated as a percentage of view width OR height

(whichever is greater), with a value of 1 fully covering the view at any aspect (e.g. for

backgrounds).

docs.xgasoft.com

The "draw_self_scaled" Function

Syntax

draw_self_scaled(ratio, min, max);

Description

Copyright © XGASOFT, All Rights Reserved

Because this ratio alone may result in sprites smaller or larger than desirable on

one axis, a min and max ratio can also be supplied to limit size on the other axis

than is calculated for the base ratio (e.g. for HUD elements). If max is set to 0,

clamping will be disabled.

Also returns the scale multiplier, which can be used to position or scale other

elements relative to the drawn sprite. Scale multiplier will also be re�ected in built-

in image_xscale and image_yscale instance variables.

Example

draw_self_scaled(0.25, 0.15, 0.5);

Copyright © XGASOFT, All Rights Reserved

docs.xgasoft.com

The "draw_sprite_scaled"
Function

Syntax

draw_sprite_scaled(sprite, subimg, x, y, ratio, min, max);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

sprite sprite The sprite to draw scaled

subimg integer The sprite frame index to draw

x real
The horizontal room coordinate at which to draw the
sprite

y real
The vertical room coordinate at which to draw the
sprite

ratio real
Percentage of the view to occupy, as a value ranging
from 0-1

min real Minimum allowable ratio, or percentage of the view

max real Maximum allowable ratio, or percentage of the view

Draws a sprite scaled relative to the size of the active view camera. Ratio is

calculated as a percentage of view width OR height (whichever is greater), with a

value of 1 fully covering the view at any aspect (e.g. for backgrounds).

Because this ratio alone may result in sprites smaller or larger than desirable on

one axis, a min and max ratio can also be supplied to limit size on the other axis

than is calculated for the base ratio (e.g. for HUD elements). If max is set to 0,

clamping will be disabled.

Description

Copyright © XGASOFT, All Rights Reserved

Also returns the scale multiplier, which can be used to position or scale other

elements relative to the drawn sprite.

Example

var scale = draw_sprite_scaled(my_sprite, image_index, x, y, 0.25,
0.15, 0.5);

draw_sprite_ext(other_sprite, image_index, x, y + 128, scale, scale,
0, c_white, 1);

Copyright © XGASOFT, All Rights Reserved

docs.xgasoft.com

The "draw_sprite_scaled_ext"
Function

Syntax

draw_sprite_scaled_ext(sprite, subimg, x, y, ratio, min, max, rot,
col, alpha);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

sprite sprite The sprite to draw scaled

subimg integer The sprite frame index to draw

x real
The horizontal room coordinate at which to draw the
sprite

y real
The vertical room coordinate at which to draw the
sprite

ratio real
Percentage of the view to occupy, as a value ranging
from 0-1

min real Minimum allowable ratio, or percentage of the view

max real Maximum allowable ratio, or percentage of the view

rot real The sprite rotation angle, in degrees

col color
The sprite blending color to draw, where c_white is

default

alpha real The sprite transparency, ranging from 0-1

Draws a sprite scaled relative to the size of the active view camera. Ratio is

calculated as a percentage of view width OR height (whichever is greater), with a

value of 1 fully covering the view at any aspect (e.g. for backgrounds).

Description

Copyright © XGASOFT, All Rights Reserved

Because this ratio alone may result in sprites smaller or larger than desirable on

one axis, a min and max ratio can also be supplied to limit size on the other axis

than is calculated for the base ratio (e.g. for HUD elements). If max is set to 0,

clamping will be disabled.

Also returns the scale multiplier, which can be used to position or scale other

elements relative to the drawn sprite.

Example

draw_sprite_scaled_ext(my_sprite, image_index, x, y, 0.25, 0.15, 0.5,
0, c_white, 1);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

surf surface The surface to draw scaled

x real
The horizontal room coordinate at which to draw the
surface

y real
The vertical room coordinate at which to draw the
surface

ratio real
Percentage of the view to occupy, as a value ranging
from 0-1

min real Minimum allowable ratio, or percentage of the view

max real Maximum allowable ratio, or percentage of the view

docs.xgasoft.com

The "draw_surface_scaled"
Function

Syntax

draw_surface_scaled(surf, x, y, ratio, min, max);

Copyright © XGASOFT, All Rights Reserved

Draws a surface scaled relative to the size of the active view camera. Ratio is

calculated as a percentage of view width OR height (whichever is greater), with a

value of 1 fully covering the view at any aspect (e.g. for backgrounds).

Because this ratio alone may result in surfaces smaller or larger than desirable on

one axis, a min and max ratio can also be supplied to limit size on the other axis

than is calculated for the base ratio (e.g. for HUD elements). If max is set to 0,

clamping will be disabled.

Also returns the scale multiplier, which can be used to position or scale other

elements relative to the drawn surface.

Because surface data is volatile, surfaces are likely to be destroyed if the

window is resized. Always check if a surface exists before drawing, and include

regeneration code if it does not.

Description

CAUTION

Example

draw_surface_scaled(my_surf, x, y, 0.25, 0.15, 0.5);

Copyright © XGASOFT, All Rights Reserved

docs.xgasoft.com

The "draw_surface_scaled_ext"
Function

Syntax

draw_surface_scaled_ext(surf, x, y, ratio, min, max, rot, col, alpha);

Copyright © XGASOFT, All Rights Reserved

Argument Type Description

surf surface The surface to draw scaled

x real
The horizontal room coordinate at which to draw the
surface

y real
The vertical room coordinate at which to draw the
surface

ratio real
Percentage of the view to occupy, as a value ranging
from 0-1

min real Minimum allowable ratio, or percentage of the view

max real Maximum allowable ratio, or percentage of the view

rot real The surface rotation angle, in degrees

col color
The surface blending color to draw, where c_white

is default

alpha real The surface transparency, ranging from 0-1

Draws a surface scaled relative to the size of the active view camera. Ratio is

calculated as a percentage of view width OR height (whichever is greater), with a

value of 1 fully covering the view at any aspect (e.g. for backgrounds).

Because this ratio alone may result in surfaces smaller or larger than desirable on

one axis, a min and max ratio can also be supplied to limit size on the other axis

Description

Copyright © XGASOFT, All Rights Reserved

than is calculated for the base ratio (e.g. for HUD elements). If max is set to 0,

clamping will be disabled.

Also returns the scale multiplier, which can be used to position or scale other

elements relative to the drawn surface.

Because surface data is volatile, surfaces are likely to be destroyed if the

window is resized. Always check if a surface exists before drawing, and include

regeneration code if it does not.

CAUTION

Example

draw_surface_scaled_ext(my_surf, x, y, 0.25, 0.15, 0.5, 0, c_white,
1);

Copyright © XGASOFT, All Rights Reserved

This product is made possible by the generous support of XGASOFT patrons on

Patreon. Every contribution counts, no matter how big or small. To all fans and

patrons around the globe, thanks for being a part of XGASOFT's story!

Very special thanks goes out to:

Marvin Mrzyglod

AshleeVocals

AutumnInAprilArt

Daniel Sato

Darktoz

docs.xgasoft.com

Special Thanks

Patreon credits

Patreon 'Enthusiasts'

Patreon 'Developers'

Copyright © XGASOFT, All Rights Reserved

https://www.patreon.com/xgasoft

Dirty Sock Games

Josef Scott

Meyaoi Games

Kampmichi (Forgers of Novelty)

Adam Miller (Actawesome)

Cosmopath

D Luecke

Alex Lepinay

Tarquinn J Goodwin

XGASOFT is also privileged to work with other creators from around the world, in

some cases on the very developer tools used to make XGASOFT products possible.

Special credit goes out to the following talents for their contributions:

Patreon 'Gamers'

All Other Patreon Supporters

Creative Credits

Copyright © XGASOFT, All Rights Reserved

Kanen (as Miki and Mei)

VNgen Demo Voiceover

Copyright © XGASOFT, All Rights Reserved

Last updated: 12/16/2019

We know that reading EULAs isn't very exciting, but this is important. Please take

your time to review and ensure you understand the terms of this document before

proceeding to use XGASOFT products in your own work.

If you have any questions or concerns about the terms outlined in this document,

please feel free to contact us at contact@xgasoft.com or by visiting our Contact &

Support page.

This License Agreement (the "Agreement") is entered into by and between XGASOFT

(the "Licensor"), and you (the "Licensee"). This agreement is legally binding, and

becomes e�ective when you purchase and/or download a free product from

docs.xgasoft.com

End-User License Agreement
("EULA")

NOTE

License Agreement

Copyright © XGASOFT, All Rights Reserved

mailto:contact@xgasoft.com
https://xgasoft.com/contact/

XGASOFT or authorized third-party distributors. If you do not agree to the terms of

this Agreement, do not purchase, download, or otherwise use XGASOFT products.

In order to accept this Agreement, you must be at least eighteen (18) years of age

or whatever age is of legal majority in your country. Otherwise, you must obtain

your parent's or legal guardian's approval and acceptance of this Agreement in

your stead. XGASOFT accepts no liability for your failure to meet this requirement.

XGASOFT delivers content through authorized third-party distributors, each of

which may require its own separate End-User License Agreement ("EULA").

XGASOFT accepts no liability for the terms of any third-party agreements, nor for

your failure to meet them.

This is a license, not a sale. XGASOFT retains ownership of all content (including but

not limited to any copyright, trademarks, brand names, logos, software, images,

animations, graphics, video, audio, music, text, and tutorials) comprising digital

products and services o�ered by XGASOFT (the "Property"). All rights not expressly

granted are reserved by XGASOFT.

Subject to your acceptance of the terms of this Agreement, XGASOFT grants you a

worldwide, revocable, non-exclusive, non-transferable, and perpetual license to

download, embed, and modify for your own purposes XGASOFT Property solely for

incorporation with electronic applications and other interactive media, including

both commercial and non-commercial works, wherever substantial value has been

added by you.

Any source code included as part of XGASOFT Property must be compiled prior to

redistribution as an incorporated work, whether for commercial or non-commercial

Standard Lifetime License

Copyright © XGASOFT, All Rights Reserved

purposes.

When you register as a recurring �nancial supporter of XGASOFT through Patreon

(Patreon, Inc.), XGASOFT may provide free access to XGASOFT Property as a reward,

subject to the terms of each contribution tier. This is a privilege, not a right.

XGASOFT retains ownership of all content (including but not limited to any

copyright, trademarks, brand names, logos, software, images, animations, graphics,

video, audio, music, text, and tutorials) comprising digital products and services

o�ered by XGASOFT (the "Property"). All rights not expressly granted are reserved

by XGASOFT.

Subject to your acceptance of the terms of this Agreement, XGASOFT grants you a

worldwide, revocable, non-exclusive, non-transferable, and temporary license to

download, embed, and modify for your own purposes XGASOFT Property solely for

incorporation with electronic applications and other interactive media, including

both commercial and non-commercial works, wherever substantial value has been

added by you.

Any source code included as part of XGASOFT Property must be compiled prior to

redistribution as an incorporated work, whether for commercial or non-commercial

purposes.

This license shall remain e�ective for the duration of your subscription to XGASOFT

through Patreon. In the event that you cancel or reduce your contribution to a

lower tier not qualifying for free access to XGASOFT Property, this license will be

considered revoked and void for any and all public commercial and non-

Patreon Limited License

Copyright © XGASOFT, All Rights Reserved

commercial activities. In order to continue using XGASOFT Property publicly, you

must purchase a standard lifetime license.

This limitation shall not be applied retroactively, so that any existing, complete, and

publicly available commercial and non-commercial properties using XGASOFT

Property will not be considered in violation of this agreement. Furthermore, this

limitation shall not apply in the event that XGASOFT suspends, revokes, or disables

the contribution of �nancial support to XGASOFT through Patreon. In such case as

contributions are limited or prohibited by XGASOFT (and not the Licensee), the

terms of the Standard Lifetime License shall apply to any and all XGASOFT Property

granted as rewards for recurring �nancial support prior to the date of suspension.

This Agreement grants one (1) user an applicable license to use XGASOFT Property

on unlimited devices. This license may not be transferred, shared with, or sold to

other users.

However, you, the Licensee, may use XGASOFT Property along with a team or

company of collaborators wherever substantial value has been added by you.

This limitation does not extend a license to other users. For any works unrelated to

you, collaborators must purchase separate licenses.

In accordance with the terms of this Agreement, you may freely modify, or alter the

functionality of XGASOFT Property exclusively for your own use.

Single-User

Modifications

Copyright © XGASOFT, All Rights Reserved

Modifying the Property will not terminate your license, however XGASOFT cannot

guarantee the quality and functionality of modi�ed versions of the Property, nor its

compatibility with other products.

XGASOFT accepts no liability for any loss or damage incurred by the modi�ed

Property, and reserves the right to refuse technical support for the modi�ed

Property.

Modi�cations made to XGASOFT Property in no way represent a change of

ownership of the Property.

You may not reverse-engineer XGASOFT Property for the purpose of commercial

exploitation which may be in competition with XGASOFT.

License fees are determined for each product and service on a case-by-case basis,

and XGASOFT reserves the right to change fees on the Property with or without

prior notice.

XGASOFT reserves the right to modify, suspend, or terminate this Agreement, the

Property, or any service to which it connects with or without prior notice and

without liability to you, the Licensee.

By using XGASOFT Property, you agree to indemnify and hold harmless XGASOFT,

its employees, and agents from and against any and all claims (including third party

claims), demands, actions, lawsuits, expenses (including attorney's fees) and

Mutability

Liability

Copyright © XGASOFT, All Rights Reserved

damages (including indirect or consequential loss) resulting in any way from your

use or reliance on XGASOFT Property, any breach of terms of this Agreement, or

any other act of your own.

This limitation will survive and apply even in the event of termination of this

Agreement.

This Agreement shall be governed by and interpreted according to the laws of the

United States of America and the State of Kansas.

If any provision of this Agreement is held to be unenforceable or invalid, such

provision will be changed and interpreted to accomplish the objectives of such

provision to the greatest extent possible under applicable law, and the remaining

provisions will continue in full force and e�ect.

This document contains the whole agreement between XGASOFT and you, the

Licensee, relating to the Property and licenses thereof and supersedes all prior

Agreements, arrangements and understandings between both parties regarding

XGASOFT Property and licenses.

Governing Law

Conclusion

Copyright © XGASOFT, All Rights Reserved

	Xtend
	About
	Changelog
	Compatibility Notes
	Reference Guide
	Introduction
	Best Practices
	Configuration
	Macros & Keywords
	Cameras & Display
	window_set_dpi
	window_get_dpi
	camera_set_view_scale
	camera_get_view_xscale
	camera_get_view_yscale
	camera_set_view_halign
	camera_get_view_halign
	camera_set_view_valign
	camera_get_view_valign
	camera_get_view_bbox_left
	camera_get_view_bbox_right
	camera_get_view_bbox_top
	camera_get_view_bbox_bottom
	display_get_bbox_left
	display_get_bbox_right
	display_get_bbox_top
	display_get_bbox_bottom

	Drawing
	draw_self_scaled
	draw_sprite_scaled
	draw_sprite_scaled_ext
	draw_surface_scaled
	draw_surface_scaled_ext

	Special Thanks
	EULA

